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Abstract. Diffusion models are promising for joint trajectory prediction
and controllable generation in autonomous driving, but they face chal-
lenges of inefficient inference steps and high computational demands. To
tackle these challenges, we introduce Optimal Gaussian Diffusion (OGD)
and Estimated Clean Manifold (ECM) Guidance. OGD optimizes the
prior distribution for a small diffusion time T and starts the reverse dif-
fusion process from it. ECM directly injects guidance gradients to the
estimated clean manifold, eliminating extensive gradient backpropaga-
tion throughout the network. Our methodology streamlines the genera-
tive process, enabling practical applications with reduced computational
overhead. Experimental validation on the large-scale Argoverse 2 dataset
demonstrates our approach’s superior performance, offering a viable so-
lution for computationally efficient, high-quality joint trajectory predic-
tion and controllable generation for autonomous driving. Our project
webpage is at https://yixiaowang7.github.io/OptTrajDiff_Page/
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1 Introduction

The diffusion model is a class of generative models capable of representing
high-dimensional data distributions. In particular, it has demonstrated strong
performance in trajectory prediction and generation for autonomous driving [10,
11,16,28,49]. In contrast to traditional trajectory prediction [18,50] and genera-
tive models [41,45], the unique advantage of diffusion models lies in their ability
to deform the generated trajectory distribution to comply with additional re-
quirements at inference stage via gradient-based guided sampling. Notably, it
is achieved without extra model training costs. This ability to perform control-
lable trajectory generation enables various useful applications, such as enforcing
additional realism constraints on predicted trajectories, generating directed and
user-specified simulation scenarios.

https://yixiaowang7.github.io/OptTrajDiff_Page/
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However, computational efficiency is a crucial bottleneck hindering the prac-
tical application of diffusion models in autonomous driving. Real-time inference
is essential for trajectory prediction, as it provides timely forecasts of surrounding
agents’ behavior, enabling safe and efficient planning in dynamic traffic scenarios.
The high demand for inference speed, coupled with limited onboard computa-
tional resources, makes it infeasible to deploy diffusion models for onboard tra-
jectory prediction. While simulations do not occur onboard, lightweight models
are still preferred to streamline the closed-loop training and evaluation pipelines.
The heavy computational cost is mainly attributed to the following two aspects:

Computationally Expensive Reverse Diffusion. At the inference stage,
the diffusion model samples from standard Gaussian distribution and gradually
denoises the sample through dynamics described by a Stochastic Differential
Equation (SDE) [39], aiming to eventually obtain a sample as if drawn from a
target data distribution. The target data distribution can be significantly dif-
ferent from a standard Gaussian distribution, necessitating a large number of
denoising steps to yield good performance. Prior works have attempted to re-
duce the reverse diffusion steps through adaptive noise schedule [17, 32], fast
samplers [21,35,43,46], or distillation [31,37]. However, the fixed standard Gaus-
sian prior poses a challenge in accelerating the reverse diffusion process without
violating the SDE, which can inevitably compromise the generation quality.

Computationally Expensive Guided Sampling. Controllable genera-
tion is typically achieved by guiding the denoising process with the gradient of
a guidance cost function. The guidance cost function encodes the desired char-
acteristics of the generated data, which is typically defined on the clean data
manifold in trajectory prediction and controllable generation problems. How-
ever, guided sampling intends to inject the gradient of the guidance cost function
into the series of noisy data at intermediate diffusion steps. It requires a forward
pass to estimate the clean data first and then back-propagating throughout the
entire network to estimate the gradient with respect to the intermediate noisy
data [16,20,28], which is very computationally intensive.

Targeted at these challenges, we take a step further to improve the computa-
tional efficiency of diffusion models while maintaining their performance for joint
trajectory prediction and controllable generation tasks. Specifically, we propose
two novel solutions for efficient reverse diffusion and guided sampling respec-
tively. First, we present Optimal Gaussian Diffusion (OGD) to accelerate the
reverse diffusion process. At the inference stage, instead of a standard Gaus-
sian distribution far away from the desired data distribution, OGD starts from
an optimal Gaussian distribution, which minimizes the distance to intermediate
data distribution at a specific noise level, cutting down the diffusion steps be-
fore that. We show that we can analytically estimate such an optimal Gaussian
distribution and also, an optimal perturbation kernel distribution, at any noise
level from the statistics of the data distribution. It allows flexible tuning of the
diffusion steps at the inference stage, without the need to train any additional
models [48]. We further derive a practical implementation of OGD for joint tra-
jectory prediction and generation, where the optimal Gaussian prior is computed
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(a) Optimal Gaussian Diffusion (OGD) (b) Estimated Clean Manifold Guidance (ECM)

Fig. 1: Overview of Optimal Gaussian Diffusion (OGD) and Estimated Clean Manifold
Guidance (ECM). (a) OGD uses the mean and variance of the data distribution to
calculate the optimal prior distribution at a small T . It can largely reduce the diffusion
time compared with vanilla diffusion. (b) ECM directly injects the gradient of guidance
into the clean data manifold to mitigate computational complexity.

using the mean and variance of marginal trajectory distributions estimated with
a pre-trained marginal trajectory prediction [18,24,50] model.

Second, we propose Estimated Clean Manifold Guidance (ECM) to accelerate
guided sampling for controllable generation. To save the computational cost due
to estimating the guided gradient on the noisy data, we aim to directly inject the
gradient into the clean data manifold without lengthy backpropagation. ECM
is motivated by the insight that guided sampling can be regarded as a multi-
objective optimization problem on the clean data manifold: The first objective is
to maximize the likelihood of the samples on the estimated real data distribution;
the second objective is to achieve low guidance cost. ECM hierarchically solves
this multi-objective problem without backpropagation throughout the entire dif-
fusion model. We show that it leads to faster inference time and much better
performance than existing approaches. Also, to tackle the challenges imposed
by the multi-modal nature of vehicle interactions, we propose to warm-start the
multi-objective optimization problem with reference joint trajectory points esti-
mated using a marginal trajectory predictor. We refer to the complete algorithm
as Estimated Clean Manifold with Reference Joint Trajectory (ECMR).

To evaluate the proposed OGD and ECM methods on real-world tasks, we
implement the OGD model leveraging a pre-trained marginal prediction model,
QCNet [50], and conduct extensive experiments on the Argoverse 2 dataset. We
show that OGD can achieve better joint trajectory prediction performance than
vanilla diffusion with significantly fewer diffusion steps—it only takes 1/12 of the
diffusion steps used by the vanilla diffusion model. OGD also achieves outstand-
ing prediction accuracy compared to non-diffusion joint prediction models. In
addition, ECMR, coupled with OGD, can generate samples with significantly
lower guidance costs with the same level of realism scores compared to conduct-
ing controllable generation on the vanilla diffusion model using existing guided
sampling approaches used in autonomous driving [16, 28], but using around 1/5
of their inference step.
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2 Related Work

Diffusion models. Diffusion models have demonstrated their ability to pro-
duce high-quality, diverse samples in a variety of applications, such as image,
video, and 3D generation [13, 22, 29]. Recently, diffusion models have been ap-
plied to trajectory prediction in autonomous driving. It shows great performance
on representing future trajectory distribution [10,16]. However, diffusion models
need to run lengthy reverse diffusion processes to generate high-quality sam-
ples [5,10]. This makes it hard to apply diffusion models to trajectory prediction
in autonomous driving since it requires in-time prediction for the downstream
planning module to promptly respond to dynamically changing traffic scenarios.
Previous works [17,21,31,32,35,37,43,46] mostly focused on mitigating this issue
by investigating how to solve reverse SDE in a faster manner. In addition, similar
to ours, some works sought alternative initialization of the reverse diffusion pro-
cess to achieve faster inference. For example, [3] initialized the reverse diffusion
process with samples generated by another generative backbone network. How-
ever, the backbone network is not deliberately trained for the reverse diffusion
process. [48] proposed to learn the initial diffusion with a generative adversarial
network (GAN) [8]. However, it requires training a large additional model with
a complex training procedure. Also, it requires specifying the reverse diffusion
time as a hyperparameter prior to GAN training, which is hard to tune.

Guided sampling. Diffusion models have been successfully used to tackle
controllable tasks through guided sampling, such as image inpainting [36] and
motion planning [15]. A notable feature of diffusion models with guided sam-
pling is their ability to condition the generation process on the user’s preference,
which was not available during the training phase. In the driving domain, re-
cent works used guided sampling to generate controllable traffic [16, 49], and
controllable pedestrian animation [28]. Our work belongs to the prior category,
where user-specified guidance cost is used to guide generation in the trajectory
space. In this case, the guidance cost function encodes certain desired proper-
ties of the generated trajectories. Thus, it is normally defined on the realistic
trajectory samples, which are on the so-called clean manifold, instead of the
noisy manifold containing the intermediate noisy data. Some works attempted
to learn the guidance cost function on the noisy manifold [15]. Otherwise, it
will lead to numerical instability when evaluating guidance cost at intermediate
noisy data [28, 49]. To avoid the additional computational costs introduced by
a learned guidance cost function, [16, 28] proposed to project the intermediate
noisy data into the clean manifold through the diffusion model, and evaluate the
guidance cost on the projected point. This approach requires back-propagating
throughout the entire diffusion model, which is also computationally intensive.

Trajectory prediction. In autonomous driving [26, 27], it is vital to pre-
cisely forecast how other participants in traffic will move in the future so that
ego vehicle can plan a safe and efficient trajectory to execute in the future.
Marginal trajectory prediction is used to predict the trajectory distribution for
single vehicle and recent works involve kinematic constraints of the vehicles, re-
strictions of complex topology of roads, and interaction from the surrounding
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vehicles [18,24,50]. Recently, joint trajectory prediction has attracted attention
from several researchers. It consists in predicting the joint future trajectories for
all agents so that these trajectories are consistent with one another [25], an aspect
which marginal trajectory prediction does not consider. Scene-Transformer [25]
uses a fixed set of learnable scene embeddings to generate corresponding joint
trajectories for all the vehicles in the given scene. Models like M2I [40], and
FJMP [30] adopt a conditional approach, predicting the motions of other agents
based on the movements of controlled agents. Diffusion model [16] has also been
used to predict the joint trajectory. However, joint trajectory prediction is still a
challenging problem since the complexity increases exponentially with the num-
ber of vehicles in the scene. The efficiency problem becomes more serious when
using diffusion model to predict the joint trajectory distribution [16], and largely
limits the application of diffusion models in autonomous driving.

3 Preliminaries

3.1 Diffusion Models

The diffusion process continuously perturbs the unknown data distribution
pdata with a perturbation kernel and generates intermediate data with a given
diffusion time T . Denote the distribution of the time-dependent intermediate
nosiy data xt as pt(xt), t ∈ [0, T ], where p0(x0) = pdata is the clean data
distribution and x0 is the clean data. The series of intermediate data xt are
generated through the Stochastic Differential Equation (SDE) [39]:

dxt = f(xt, t)dt+ g(t)dw,x0 ∼ pdata = p0(x0), (1)

where f(·, t) is the drift coefficient, g(t) is the diffusion coefficient, and w is the
Wiener process. We can recover pdata from reverse-time SDE

dxt = [f(xt, t)− g(t)2∇xt log pt(xt)]dt+ g(t)dw̄,xT ∼ pT (xT ), (2)

where w̄ is another Wiener process, dt is negative timestep.
In order to solve Eq. (2), we first need to approximate pT (xT ). In previous

works, pT (xT ) is typically approximated by some prior distributions pprior which
contain no information of pdata. In this paper, we adopt the setting of Variance
Preserving (VP) SDE [12, 39]. In VP-SDE, pT (xT ) ≈ pprior when T → ∞.
The perturbation kernels are in the form of pt(xt|x0) = N (xt;

√
ᾱtx0, (1 −

ᾱt)Σp) where scalar ᾱt is diffusion schedule parameter, |Σp| = 1. A common
choice for Σp is the identity matrix I [12, 39]. Second, we need to approximate
∇xt log pt(xt) for all t ∈ (0, T ]. Some works solve score-matching problem [14,38]
and learn a score function sθ(st, t) to approximate ∇xt log pt(xt). In this paper,
we follow the practice in DDPM [12] to learn the noise ϵ using a network ϵθ(xt, t):

argmin
θ

Ex0∼pdata,ϵ∼N (0,Σp)||ϵ− ϵθ(xt, t)||22 (3)

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵθ(xt, t) = −

√
1− ᾱtsθ(xt, t). With these

two approximation, we can learn qθ(x0) to estimate unknown data distribution
p0(x0) solving Eq. (2) from t = T to t = 0.
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3.2 Guided Sampling

In prior diffusion-based controllable generation frameworks [15,16,20,28,49],
controllable generation is achieved via biasing of the score function for sampling:

∇xt
log [pt(xt) exp(−C(xt))] = ∇xt

log pt(xt)−∇xt
C(xt) (4)

where C(·) is the guidance function. It requires estimating the guidance gradient
with respect to the noisy data xt. Some approaches introduce an additional neu-
ral network to approximate C(·) at different noisy levels [4,15,49]. The additional
neural network imposes additional training costs and heavier computational bur-
den at the inference stage. To this end, some works define an analytical guidance
function J (·) on the clean data x0. They first estimate x̂0 = fθ(xt) based on xt

with the diffusion model, then calculate C(xt) as J (x̂0). However, when taking
the gradient of J (x̂0) with respect to xt, we get

∇xt
J (x̂0) = ∇x̂0

J (x̂0) · ∇xt
fθ(xt). (5)

Estimating ∇xtfθ(xt) requires backpropagating throughout the entire diffusion
model, i.e., fθ(xt). It requires heavy computing resources and GPU memory.

3.3 Trajectory Prediction and Controllable Generation

Joint trajectory prediction aims to predict the future joint trajectories x0

for all the vehicles in the scene, conditioned on context information c. It can
be regarded as a conditional generation task where the goal is to train a gen-
erative model to approximate the distribution p0(x0|c). For simplicity, we omit
c and represent p0(x0|c) as p0(x0). We denote n as the number of vehicles in
the same scene and x0,i as the future trajectory for vehicle i, i ∈ {1, 2, ..., n},
so x0 = [x0,1,x0,2, ...,x0,n]. Joint trajectory prediction can be very challenging.
The complex interactions among vehicles, especially in highly interactive and
dense traffic, result in a complicated high-dimensional p0(x0), which is difficult
to accurately model with lightweight and computationally efficient models. A
simplified solution is to approximately decompose the joint trajectory distri-
bution into marginal ones, i.e., p0(x0) ≈

∏n
i p0(x0,i). It leads to the marginal

trajectory prediction task, which has been extensively studied with mature solu-
tions [18, 24, 50]. One drawback is that it omits the interactions among vehicles
in the predicted horizon, which leads to large errors in highly interactive scenes.

Controllable trajectory generation is closely related to trajectory prediction.
In addition to generating realistic trajectory samples resembling the ground-
truth p0(x0), controllable generation imposes an additional objective—the gen-
erated trajectories should comply with specified guidance cost function J (·). We
term the former objective as realism and the latter as guidance effectiveness. The
guidance cost function J (·) can be some goal points of the vehicles, kinematic
constraints, etc, which are mostly defined on the clean manifold rather than on
the noisy data when it comes to diffusion-based controllable generation.
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4 Methodology

4.1 Optimal Gaussian Diffusion

As discussed in Sec. 3.1, diffusion models typically select a non-informative
prior distribution pprior, such as a standard Gaussian, as the initial data distribu-
tion for the reverse diffusion process. Such a non-informative pprior is reasonable
since pT (xT ) converges to it when T →∞. However, it also means that a large T
is required at inference time to yield good performance, which undermines com-
putational efficiency and limits its wide real-time applications in autonomous
driving. In this section, we aim to investigate a practical solution to tackle this
challenge for joint trajectory prediction. Given the inherent limitation imposed
by a non-informative prior, the key question we look into is: can we instead adopt
an informative prior so that we can obtain the same level of performance with
much smaller reverse diffusion steps?

First, we still consider a Gaussian prior, but with learnable parameters, i.e.,
we parameterize pprior as qϕ(T ) = N (µ,Σ), where µ and Σ are learnable.
We aim to optimize µ and Σ to enhance the generation performance for small
T . We got inspiration from [5], where an upper bound of the Kullback–Leibler
divergence of the clean data distribution p0(x0) and learned distribution qθ(x0)
was derived as a function of the diffusion time T :

KL[p0(x0)||qθ(x0)] ≤ G(xθ, T ) + KL[pT (xT )||pprior] (6)

where G(xθ, T ) is the positive accumulated error between ∇x log pt(xt) and
sθ(xt, t) from 0 to T [5]. Note that G(xθ, T ) is an accumulated error so G(xθ, T1) ≤
G(xθ, T2), T1 ≤ T2. If we can achieve lower KL[pT1

(xT1
)||qϕ(T1)], then a tighter

upper bound can be obtained. This opens up the possibility to achieve better
performance with less diffusion time. Thus, we propose to optimize the prior
distribution by minimizing KL[pT (xT )||qϕ(T )]. As shown in Proposition 1 (See
proof in Appendix A), it turns out that the optimal µ and Σ can be expressed
analytically as functions of the ground-truth data statistics. In addition, we find
that we can further minimize the target KL divergence if we set a learnable Σp

in the perturbation kernel pt(xt|x0) = N (xt;
√
ᾱtx0, (1−ᾱt)Σp), whose optimal

value can also be expressed as a function of the data statistics.

Proposition 1. Denote µd and Σd as the mean and variance of pdata. Denote
Σ∗(i, j) and Σ∗p(i, j) as the element at ith row and jth column of matrix Σ∗

and Σ∗p. The optimal solution to minKL[pT (xT )||qϕ(xT , T )] is
µ∗ ≈

√
ᾱTµd

Σ∗p(i, j) ≈ 1
|Σd|Σd(i, j)

Σ∗(i, j) ≈ ᾱTΣd + (1− ᾱT )
2Σ∗p = (ᾱ2

T + (1−ᾱT )2

|Σd| )Σd(i, j)

(7)

Thus, if we are able to estimate the mean and variance of the ground-truth
data distribution, we can then analytically determine the optimal prior distribu-
tion N (µ∗,Σ∗) and the optimal perturbation kernel variance Σ∗p at any noise
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level T ∈ [0,∞). It leads to a crucial advantage against prior efforts on prior
learning [48], where a target noise level has to be determined at training time in
order to train an additional neural network to represent the prior distribution at
the pre-selected noise level. In contrast, our method enables flexible tuning of the
number of diffusion steps at inference time, without additional training costs.
Since the learnable qϕ(T ) and perturbation kernel are both Gaussian, we refer
to our proposed diffusion framework as Optimal Gaussian Diffusion (OGD).

For joint trajectory prediction and generation, we need to estimate the mean
and variance of the joint trajectory distribution p0(x0). It is not straightfor-
ward as only a limited number of trajectory samples exist in the dataset under
the same context. Considering there exists mature and accurate marginal tra-
jectory prediction models [18, 24, 50], we can conveniently extract statistics of
the marginal trajectory distributions, i.e., p0(x0,i), i ∈ {1, 2, ..., n} from a pre-
trained marginal trajectory predictor. Since Proposition 1 provides element-wise
optimal value, we can easily get:

Corollary 1. Denote µd(x0,i) and Σd(x0,i) as the mean and variance of marginal
distribution for vehicle i and set both Σ and Σp are block-diagonal matrices
where each block represents the marginal characteristics of one single vehicle.
The optimal solution to minKL[pT (xT )||qϕ(xT , T )] is

µ∗ = [
√
ᾱTµd(x0,1), ...,

√
ᾱTµd(x0,n)]

T

Σ∗p = 1∑n
i=1 |Σd(x0,i)|diag[Σd(x0,1), ...,Σd(x0,n)]

Σ∗ = ᾱT diag[Σd(x0,1), ...,Σd(x0,n)] + (1− ᾱT )
2Σ∗p

(8)

Corollary 1 implies that, if we further confine Σ and Σp to be block-diagonal
without covariance between the states of different vehicles, then we can deter-
mine their optimal values purely from the estimated marginal statistics µd(x0,i)
and Σd(x0,i), i ∈ {1, 2, ..., n}, which enables a practical implementation of
the proposed OGD model for joint trajectory prediction and generation tasks.
Specifically, for vehicle i, we leverage a pre-trained marginal trajectory predic-
tor [18,24,50], predict diverse marginal trajectory sample set Ri = {rli}Ll=1 and
corresponding likelihood set {p(rli)}Ll=1, and estimate µd(x0,i) and Σd(x0,i). For
example, µd(x0,i) can be estimated as 1

L

∑
l=L p(rli)r

l
i.

4.2 Estimated Clean Manifold Guidance with Reference

As discussed in Sec. 3.2, the intensive computation required for guided sam-
pling comes from the calculation of ∇xt

fθ(xt). Previous guided sampling ap-
proaches bias the score function defined on the intermediate noisy data xt. In
this section, we aim to investigate whether we can inject the gradient directly
into x0 to avoid the gradient propagation process. We first reformulate the con-
trollable generation as a multi-objective optimization problem directly over x0

and propose an iterative algorithm to solve the formulated problem. In addi-
tion, we use reference trajectory points to create the region of interest, which
helps solve the local optimal problem caused by multi-modal joint trajectory
distribution and accelerate the guided sampling process.
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Estimated Clean Manifold Guidance. The objective of controllable gener-
ation of sample x0 includes two different objectives. The most important is the
negative likelihood, ensuring the sample lies in the clean manifold. The second
important is the guidance cost representing the user preference on the generated
sample x0. This multi-objective optimization problem can be represented as

min
x0

[− log qθ(x0),J (x0)]
T (9)

Inspired by lexicographic optimization [33], we solve this multi-objective opti-
mization problem hierarchically. The main idea is to optimize each objective in
the order of importance regardless of the degradation of the other less significant
objectives. We first optimize the most important objective, − log qθ(x0), to gen-
erate realistic and high-likelihood samples. The diffusion model achieves this goal
effectively by reversing the diffusion process from noisy samples at specific noise
level. However, exact noise level of current sample x0 is unknown. To address
this, we inject noise at level t into x0, and then denoise it from t with learned dif-
fusion model. This approach, similar to noise injection and denoising [1,23,37],
improves the desired sample quality. We iteratively repeat this process K times,
injecting guidance at each iteration to strengthen user preference.

Specifically, denote x0(k) as the sample at iteration k. We first regenerate
high-likelihood sample x̂0(k) by diffusion model:

x̂0(k)← E[qθ(x0(k)|xtk(k))] =
1
√
ᾱtk

(xtk −
√
1− ᾱtkϵθ(xtk(k), tk)), (10)

where xtk(k) =
√
ᾱtkx0(k) +

√
1− ᾱtkϵ, ϵ ∼ N (0,Σp). tk ∈ [0, T ] is a tunable

parameter. Then we minimize the guidance cost function with a small degrada-
tion of the most important objective − log qθ(x0),

x0(k − 1)← x̂0(k)− ζ∇x̂0(k)J (x̂0(k)) (11)

where ζ is the step size. Small degradation of − log qθ(x0) is realized by one-step
gradient update and proper step size ζ. See the derivation of the optimization
process and the parameter tuning in Appendix B.

During the iterations, x0(k), ∀k ∈ {0, 1, ...,K − 1} are not exactly on the
clean manifold. We minimize its negative log-likelihood through diffusion model,
resulting in it lying on an estimated clean manifold. Thus, we call our method
Estimated Clean Manifold (ECM) Guidance.

Reference Joint Trajectories. To generate trajectories with low guidance
cost, we are essentially searching low-cost trajectories within the high-likelihood
region. At the same time, joint trajectory distribution is a multi-modal distri-
bution resulting from road topologies and different decision variables, meaning
the likelihood has multiple peaks. This leads to the optimal solution of Problem
9 having multiple local optimals, and each optimal is far away from the other.
Guided sampling methods [15,16,28,49], including our method ECM, suffer from
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Fig. 2: Two challenges with multi-peak function optimization: 1) Gradients may lead
to suboptimal local optima (left); 2) There exist regions with low likelihood but high
guidance cost uncertainty, leading to instability (right). Our approach can bypass the
lengthy paths between peaks, search for better optima, and avoid uncertain areas.

two challenges (See Fig. 2): 1) it can be trapped at the local optimal around the
initial position; 2) it takes massive efforts to drag the sample from one peak to
another and transferring from one modal to another will need to pass through
the region of low-likelihood (off clean-manifold), leading to numerical instability.

Algorithm 1: ECMR
Input: J (·), {ᾱt, βt}T−1

t=0 , {tk}K−1
k=0

1: x0(K) ∼ N (0,Σp)
2: for k = K − 1, ..., 1 do
3: ϵ ∼ N (0,Σp)
4: xtk

(k) =
√

ᾱtk
x0(k) +

√
1− ᾱtk

ϵ

5: x̂0(k) = 1√
ᾱtk

(xtk
(k)−

√
1− ᾱtk

ϵθ(xtk
(k), t))

6: x̂0(k) = argminJ (w), w ∈ R
⊗

x̂0(k)
7: x0(k − 1)← x̂0(k)− ζ∇x̂0(k)J (x̂0(k))

8: end for
Output: x0(0)

To overcome this, we gen-
erate high-likelihood refer-
ence joint trajectories, choose
the best one as the ini-
tialization. Note that com-
binations of samples with
high marginal likelihood tend
to exhibit high joint likeli-
hood. Therefore, we can uti-
lize the marginal sample set
R = {Ri}ni=1 obtained from
pre-trained marginal models
to generate the references.
Specifically, for iteration k, we
construct candidate joint trajectory set R

⊗
x̂0(k) = {[w1,w2, ...,wn]|wi ∈

Ri ∪ {x̂0,i}, i = 1, 2, ..., n}. We calculate the guidance cost of all possible combi-
nations, J (w), w ∈ R

⊗
x̂0(k), and choose the minimal-cost one as the reference.

The guided sampling algorithm, ECM with reference joint trajectories (ECMR),
is introduced in Algorithm 1.

5 Experiments

5.1 Experimental setup

Dataset. We use Argoverse 2 [44], a widely used and large-scale trajectory
prediction dataset, to test the effectiveness of our approaches for joint trajectory
prediction and controllable generation. It has a large observation window of 5s
and a long prediction horizon of 6s.
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Implementation Details. We use the fixed scene context encoder of pre-
trained QCNet [50] to extract compact and representative context features from
context information c. Then, we utilize a cross-attention layer to update the
intermediate noisy data xt with multiple contexts, including the history encod-
ings of the target agent, the map encodings, the neighboring agents’ encodings.
Inspired by [7], we also add a cross-attention layer to update xt with the diverse
marginal trajectory samples rli and its corresponding likelihood. In addition, we
use self-attention to allow the interaction between xt,i and xt,j . Then the model
predicts the noise ϵθ(xt, t). According to [16], compact trajectory representation
helps the diffusion model to generate high-quality trajectories efficiently. Inspired
by this, we also learn a linear mapping between the 10-dimensional latent and
120-dimensional trajectories. Similar to [16], we design a rapid sample cluster-
ing algorithm so that we can generate a representative joint trajectory set. To
increase the efficiency of sampling, we use DDIM [35] to accelerate the inference,
and the DDIM step stride is 10. See Appendix C for details and analysis.

5.2 Joint trajectory prediction

We now evaluate OGD for joint trajectory prediction. Given K joint trajec-
tories, the evaluation metrics are 1) avgMinFDEK/avgMinADEK : the aver-
age of lowest final/average displacement error (FDE/ADE) of joint trajectory
samples; 2) actorMRK : the rate of trajectory predictions that are considered
to be “missed” (>2m FDE) in the lowest minFDE joint trajectory samples; 3)
actorCRK : the rate of collisions across “best” (lowest avgMinFDE) joint tra-
jectory samples; 4) avgBrierMinFDEK : calculated similarly to avgMinFDEK

but scaled by the probability score of joint trajectory samples. We denote metrics
with superscript “*” as those after sample clustering (see Appendix C.3).

As a baseline, we train a vanilla diffusion (VD) baseline that shares the same
neural network architecture as OGD. Specifically, we train an Optimal Gaussian
Diffusion model with diffusion time Ttrain = 100 (OGD), vanilla diffusion with
two different diffusion times Ttrain = 100, 500 (VD100, VD500). Note that T is
denoted as the diffusion time from which the reverse diffusion process starts.
First, during the inference, we change T and evaluate OGD and VD100 who
have the same Ttrain = 100. Figure 3 shows that, with the decrease of the
reverse steps, avgMinFDE128 of OGD keeps lower than VD100 and it is more
stable with the change of T . It is also interesting to note that the performance
of OGD even becomes better in the early stage. We hypothesize that it is because
that KL[pT (xT )||pprior] of OGD is small and the accumulated error of G(xθ, T )
is sufficiently reduced by a small T . It also shows an advantage of OGD, which is
that it is easy for OGD to tune a suitable T for reverse diffusion without training
an additional model for every T [48]. Table 1 shows that OGD outperforms VD500

with only 40 diffusion steps.
We also compare our OGD with the other state-of-the-art methods on the

Argoverse multi-world leaderboard; our approach OGD ranks 4th on the leader-
board ranked by avgBrierMinFDEK , which demonstrates the effectiveness of our
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Fig. 3: Evaluation of Optimal
Gaussian Diffusion and vanilla
diffusion over reverse steps T .

Table 1: Evaluation on joint trajectory prediction
task. For each metric, the best result is in bold and
the second best result is underlined. T = 70 is the
best T from Fig. 3. T = 40 is the minimal diffusion
time when OGD outperforms VD500 on all metrics.

Model T avgMinFDE∗
6 avgMinADE∗

6 avgMinFDE128 avgMinADE128

VD100 100 0.62 1.38 0.49 0.97
VD500 500 0.61 1.36 0.48 0.91

OGD 100 0.60 1.32 0.43 0.81
OGD 70 0.59 1.31 0.42 0.75
OGD 40 0.61 1.34 0.47 0.77

OGD framework. Note that we only list the entries with publications or technical
reports in Tab. 2. Please refer to the official website for the full leaderboard.

5.3 Controllable Generation

Tasks. Future behaviors of vehicles can be effectively can be effectively rep-
resented by a set of goal points [9,47] such as acceleration, braking, and right or
left turn. Generating such diverse modes of joint trajectories is a typical motiva-
tion for using controllable generation. Thus, we study the controllable generation
task where the goal is to reach diverse goal points at a specific time to fully test
our guided sampling method. Considering that goal points should lie in realis-
tic routes, and the trajectories to reach such goal points should also lie in such
routes, we generate such target goal points in some realistic routes Route(τg).
The guidance cost function can be expressed as

J (x0) =
1

n
||Position(x0, τd)− Route(τg)||22, (12)

where Position(x0, τd) is the positions of x0 at time τd. We choose ground-truth
trajectories and a random combination set of diverse marginal samples, i.e.,
U = {[u1,u2, ...,un]|ui ∈ Ri, i = 1, 2, ..., n} as the realistic routes. We denote

Table 2: Quantitative results on the Argoverse 2 Multi-world Forecasting leaderboard.
For each metric, the best result is in bold and the second best result is underlined.

Model avgMinFDE∗
6 avgMinFDE∗

1 actorMR∗
6 avgMinADE∗

6 avgMinADE∗
1 avgBrierMinFDE∗

6 actorCR∗
6

QCXet [51] 1.02 2.29 0.13 0.50 0.94 1.65 0.01
Gnet [6] 1.46 3.05 0.19 0.69 1.23 2.12 0.01

Forecast-MAE [2] 1.55 3.33 0.19 0.69 1.30 2.24 0.01
FJMP [30] 1.89 4.00 0.23 0.81 1.52 2.59 0.01

OGD (Ours) 1.31 2.71 0.17 0.60 1.08 1.95 0.01
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Fig. 4: Evaluation on controllable generation: route set U and Deceleration. Magenta
diamonds represent goal points. In the first (second) row, goal points are set at the fork
lane (right lane). NNM [49] and SF [16, 28] struggle to drag samples from one modal
to another. Our methods can achieve better guidance effectiveness and realism.

the former as GT set and the latter as U set. The underlying assumption is
that diverse samples from a good marginal trajectory predictor are realistic.
We design different velocity settings to cover the diverse controllable generation
tasks in autonomous driving: first is Normal Speed (N), τd = τg = 6s; second
is Acceleration (A), τd = 5s < τg = 6s; third is Deceleration (D), τd = 6s <
τg = 5s.

Metrics. We use the following metrics to evaluate controllable generation
performance: Joint Route Deviation Error (JRDE), which measures the displace-
ments to the routes to evaluate the realism, and Joint Final Displacement Error
(JFDE), which evaluates the guidance effectiveness. We also evaluate from the
“min” and “mean” perspectives: The “min” metric considers the best sample’s
performance, while the “mean” metric assesses the ratio of valid samples.

Baselines. Guided sampling in controllable generation is mainly divided
into two approaches: the first is to directly calculate ∇xt

J (xt) [49]; the second
is to calculate ∇xt

J (x̂0) [16, 28]. We denote the former as Next Noisy Mean
Guidance (NNM) and the latter as Score Function Guidance (SF). For a fair
comparison, we use one guidance step followed by one DDIM step. We also
tune the gradient step size for different guided sampling with Optimal Gaussian
Diffusion and vanilla diffusion and report the results with the optimal step size.
See Appendix D for the details of baseline derivation and step size tuning. We
evaluate the following experiments with 128 joint trajectory samples.

Evaluation. First, we evaluate the performance and efficiency with our dif-
fusion model (OGD) and guided sampling method (ECM and ECMR) in Tab. 3,
which demonstrates our methods can generate more realistic and effective sam-
ples with 5 times less DDIM steps. In addition, with reference joint trajectories,
ECM significantly improves ’mean’ metrics, indicating it addresses the issues
discussed in Sec. 4.2 to a certain extent. Second, we compare solely on differ-
ent guided sampling methods using the same OGD model shown in Fig. 5. Our
ECM achieves better performance both in guidance effectiveness and realism. In
Fig. 4, our ECM can generate trajectories that reach goal points more closely
than NNM and SF. And with reference joint trajectory, ECMR can easily move
samples from one modal to another . Third, we evaluate the average inference
time and average GPU memory usage in Tab. 4. Our methods can generate
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Table 3: Evaluation on controllable generation: route set U and Deceleration. For
each metric, the best result is in bold and the second best result is underlined.

Model Sampling DDIM Steps Guidance Effectiveness Realism
minJFDE meanJFDE minJRDE meanJRDE

VD500 No Guid 50 1.961 5.229 0.165 0.492
VD500 NNM [49] 50 0.778 2.913 0.130 0.309
VD500 SF [16,28] 50 0.538 2.339 0.158 0.500

OGD No Guid 10 1.772 5.172 0.138 0.469
OGD ECM (Ours) 10 0.072 0.237 0.128 0.236
OGD ECMR (Ours) 10 0.053 0.146 0.110 0.154

Fig. 5: Evaluation of different guided
sampling methods on various tasks. See
Appendix E for other metrics.

Table 4: We evaluate the average inference
time per step and GPU incremental mem-
ory on U + Deceleration. We test on sin-
gle RTX A6000, batch size is 16 and number
of samples is 128.

Sampling minJFDE minJRDE time(ms) memory (GB)

NNM [49] 0.724 0.119 113 3.21
SF [16,28] 0.155 0.126 247 7.96

ECM(Ours) 0.075 0.116 111 3.21
ECMR(Ours) 0.053 0.110 116 3.22

realistic trajectories satisfying guidance quite well with low inference time and
GPU memory usage. More results on controllable generation can be found in
Appendix E.

6 Conclusion

In this work, we introduce Optimal Gaussian Diffusion (OGD) and Esti-
mated Clean Manifold (ECM) Guidance to significantly improve the compu-
tational efficiency and performance of diffusion models in autonomous driving.
These methodologies enable a substantial reduction in inference steps and com-
putational demands while ensuring enhanced joint trajectory prediction and con-
trollable generation capabilities. Our approaches and experimental results un-
derscore the potential of diffusion models for real-time applications in dynamic
environments, marking a pivotal advancement in the deployment of diffusion
models for autonomous driving. One limitation of the current implementation
is that the performance is affected by the accuracy of marginal trajectory pre-
dictors. Enhancements could be achieved with superior marginal models or by
directly learning joint predictions’ mean and variance, areas for future work.
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A Proof of Proposition 1

In this section, we prove the Proposition 1.

Proof. We would like to minimize KL[pT (xT )||qϕ(T )] in the VP-SDE [39] set-
ting. We expand VP-SDE setting into the setting when the perturbation kernel
is in the format of pt(xt|x0) = N (xt; atx0 + bt, c

2
tΣp). For VP-SDE, at =

√
ᾱt,

bt = 0, ct = 1 − ᾱt. For Variance Exploding (VE) SDE [39], at = 1, bt = 0,
ct = σ2

t . In the following content, we are going to minimize KL[pT (xT )||qϕ(T )]
in a more general form when xT = aTx0 + bT + ϵT and Var[ϵT ] = c2TΣp. Then,
we use the results on VP-SDE.

Minimizing KL[pT (xT )||qϕ(T )] is equivalent to maximizing the log likeli-
hood maxµ,Σ,Σp E[log qϕ(xT , T )], where qϕ(xT , T ) is denoted as the probabil-
ity density of qϕ(T ) = N (µ,Σ) at xT . Assume the dataset contains N data
points, which are xi

0, i = 1, 2, ..., N . And xi
T = aTx

i
0 + bT + ϵiT , i = 1, 2, ..., N .

Thus, E[log qϕ(xT , T )] can be approximated as 1
N

∑N
i=1 log qϕ(x

i
T , T ), denoted

as l(µ,Σ,Σp). Our optimization problem is formulated as

max
µ,Σ,Σp

l(µ,Σ,Σp)

s.t. |Σp| = 1
(13)

We formulate the Lagrange function

h(µ,Σ,Σp, λ) = l(µ,Σ,Σp) + λ(log |Σp| − log 1)

= l(µ,Σ,Σp) + λ log |Σp|
(14)

First, we express explicitly l(µ,Σ,Σp) as

l(µ,Σ,Σp) =
1

N

N∑
i=1

log qϕ(x
i
T , T )

=− 1

2
log |Σ| − 1

2N

N∑
i=1

(xi
T − µ)TΣ−1(xi

T − µ)

=− 1

2
log |Σ| − 1

2N

N∑
i=1

(aTx
i
0 + bT − µ)TΣ−1(aTx

i
0 + bT − µ)

− 1

N

N∑
i=1

(aTx
i
0 + bT − µ)TΣ−1ϵiT −

1

2N

N∑
i=1

ϵiT
T
Σ−1ϵiT

(15)
Take derivative with respect to µ, we get

∂h(µ,Σ,Σp, λ)

∂µ
=

1

N

N∑
i=1

(aTx
i
0 + bT − µ)TΣ−1 +

1

N

N∑
i=1

ϵiT
T
Σ−1

=
1

N

N∑
i=1

(aTx
i
0 + bT − µ)TΣ−1 = 0

(16)
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In order to take derivative with respect to Σ, we reformulate l(µ,Σ,Σp) as

l(µ,Σ,Σp) =
1

2
log |Σ−1| − 1

2N

N∑
i=1

tr[(aTxi
0 + bT − µ)(aTx

i
0 + bT − µ)TΣ−1]

− 1

N

N∑
i=1

tr[ϵiT (aTx
i
0 + bT − µ)TΣ−1]− 1

2N

N∑
i=1

tr[ϵiT ϵ
i
T

T
Σ−1]

=
1

2
log |Σ−1| − 1

2N
tr[(

N∑
i=1

(aTx
i
0 + bT − µ)(aTx

i
0 + bT − µ)T )Σ−1]

− 1

N
tr[(

N∑
i=1

ϵiT (aTx
i
0 + bT − µ)T )Σ−1]− 1

2N
tr[

N∑
i=1

(ϵiT ϵ
i
T

T
)Σ−1]

≈1

2
log |Σ−1| − 1

2N
tr[(

N∑
i=1

(aTx
i
0 + bT − µ)(aTx

i
0 + bT − µ)T )Σ−1]

− tr[Cov[ϵ,xT − µ]Σ−1]− 1

2
tr[c2TΣpΣ

−1]

≈1

2
log |Σ−1| − 1

2N
tr[(

N∑
i=1

(aTx
i
0 + bT − µ)(aTx

i
0 + bT − µ)T )Σ−1]

− c2T
2

tr[ΣpΣ
−1]

(17)
where Cov[·, ·] is the covariance matrix of two random variables and Cov[xT −
µ, ϵT ] ≈ 0 because ϵT is a independent random variable.

Then take derivative of Σ−1, we get:

∂h(µ,Σ,Σp, λ)

∂Σ−1
≈1

2
Σ − 1

2N

N∑
i=1

(aTx
i
0 + bT − µ)(aTx

i
0 + bT − µ)T − c2T

2
Σp = 0

(18)
Take derivative of Σp

∂h(µ,Σ,Σp, λ)

∂Σp
≈
∂[− c2T

2 tr[ΣpΣ
−1] + λ log |Σp|]

∂Σp

=
∂[− c2T

2 tr[Σ−1Σp] + λ log |Σp|]
∂Σp

=− c2T
2
Σ−1 + λΣ−1p = 0

(19)

Take derivative of λ

∂h(µ,Σ,Σp, λ)

∂λ
= log |Σp| = 0 (20)
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In this way, we get
µ∗ = bT + aT

1
N

∑N
i=1 x

i
0

Σ∗ ≈ 1
N

∑N
i=1(aTx

i
0 + bT − µ)(aTx

i
0 + bT − µ)T + c2TΣ

∗
p

Σ∗p ≈ 2λ
c2T

Σ∗

|Σ∗p| = 1

(21)

Given that µd ≈ 1
N

∑N
i=1 x

i
0 and Σd ≈ 1

N

∑N
i=1(x

i
0 − µd)(x

i
0 − µd)

T , we
have Σ∗ ≈ a2TΣd + c2TΣ

∗
p and

µ∗ ≈ bT + aTµd

Σ∗p ≈ 1
|Σd|Σd

Σ∗ ≈ a2TΣd + c2TΣ
∗
p = (a2T +

c2T
|Σd| )Σd

(22)

where the approximation becomes increasingly close to an equality when N is
very large.

Denote Σ∗(i, j) and Σ∗p(i, j) as the element at ith row and jth column of
matrix Σ∗ and Σ∗p, and we can have element-wise optimal values for Σ and Σp,

µ∗ ≈ bT + aTµd

Σ∗p(i, j) ≈ 1
|Σd|Σd(i, j)

Σ∗(i, j) ≈ a2TΣd + c2TΣ
∗
p = (a2T +

c2T
|Σd| )Σd(i, j)

(23)

The element-wise version is important because perturbation models typically
use a diagonal matrix as the diffusion kernel, implying that Σp is a diagonal
matrix. The element-wise version can handle not only diagonal matrix diffusion
kernels but also any other variance matrix diffusion kernels. In a multi-agent
setting, if we disentangle the relationships between different agents in the latent
space and allow the model to learn these relationships, the variance matrix can
be a block diagonal matrix. This means that there are correlations within each
agent, but no correlation exists between agents.

Apply this to VP-SDE and we get Proposition 1 and Corollary 1.

B Derivation of ECM and Parameter Tuning

B.1 Derivation of ECM

As discussed in Sec. 4.2, we solve the multi-objective problem 9 by K itera-
tions. In this section, we derive the optimization process for each iteration.

At iteration k ∈ {0, 1, ...,K − 1}, we first minimize the most important ob-
jective − log qθ(x0(k)) where x0(k) is the intermediate sample at iteration k.
Since our ultimate goal in optimizing − log qθ(x0(k)) is to ensure that the sam-
ple lies on the clean manifold, we can employ a diffusion model to regenerate the
high-likelihood sample based on the current sample x0(k). We add the noise ϵ ∼
N (0,Σp) to the current sample x0(k) and get xtk(k) =

√
ᾱtkx0(k)+

√
1− ᾱtkϵ
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where tk ∈ [0, T ] is a tunable parameter. In order to obtain qθ(x0(k)|xtk(k)),
we can we can iteratively run the reverse diffusion process until t = 0. How-
ever, this approach is time-consuming. Therefore, we use Tweedie’s formula to
perform a one-step estimation. Specifically, qθ(x0(k)|xtk(k)) can be approx-
imated as a Gaussian distribution and its mean has the highest likelihood.
Thus, given xtk(k), we can update x0(k) to the highest likelihood position,
i.e., E[qθ(x0(k)|xtk(k))],

x̂0(k)← E[qθ(x0(k)|xtk(k))] =
1
√
ᾱtk

(xtk −
√
1− ᾱtkϵθ(xtk(k), tk)) (24)

Then, inspired by ϵ-Constraint method [19], we minimize the guidance cost
under the constraint of small degradation of the primary objective value,

min
x0(k−1)

J (x0(k − 1))

s.t. − log qθ(x0(k − 1)) < − log qθ(x̂0(k)) + γ
(25)

where γ is a small positive scalar. We assume that if the deviation of x0(k − 1)
from x̂0(k) is small enough, the constrain in Problem 25 can be satisfied. Thus,
we propose a simple approach to solve this problem by one gradient update

x0(k − 1)← x̂0(k)− ζ∇x̂0(k)J (x̂0(k)) (26)

where ζ is the step size.

B.2 Parameter tuning and analysis

In this section, we analyze the impact of tk, where tk ∈ [0, T ], and injected
noise ϵ ∼ N (0,Σp) on primary objective: the negative log-likelihood.

First, we examine the impact of tk where tk ∈ [0, T ]. We first inject noise at
level tk and denoise it from tk using learned diffusion model. Generally, a larger
tk but highly distinguished samples will negate the guidance efforts made in
previous steps. Moreover, a larger tk reduces sample quality because we use a one-
step estimation, and the estimation error increases with a larger tk. Conversely,
a smaller tk introduces minimal noise, facilitating denoising to a high-likelihood
sample with only a few denoising steps. Thus, updating with mean of Tweedie’s
formula is more accurate. Therefore, we design tk to decrease as k decrease,
enhancing diversity in the initial stage and refining the sample in the final stage.

Second, we analyze the impact of injected noise ϵ ∼ N (0,Σp) in xtk(k) =√
ᾱtkx0(k)+

√
1− ᾱtkϵ. Note that ϵ at different iterations are independent with

each other, which injects excessive stochasticity. More importantly, directly in-
jecting stochastic noise at each iteration also diffuse the guidance from previous
iterations, resulting in lower guidance effectiveness. Inspired by DDIM [35], we
can choose to use ϵθ(xtk+1

(k+ 1), tk+1) as the deterministic noise ϵ at iteration
k. We use Estimated Clean Manifold (ECM) Guidance with the optimal step
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Table 5: Comparison of different choices of injected noise. GT denotes the ground
truth route set. N signifies normal speed, D indicates deceleration, and A stands for
acceleration.

Task Noise Guidance Effectiveness Realism
minJFDE meanJFDE minJRDE meanJRDE

GT+N Stochastic 0.129 0.416 0.101 0.218
Deterministic 0.056 0.209 0.113 0.232

GT+D Stochastic 0.145 0.468 0.124 0.223
Deterministic 0.072 0.237 0.128 0.236

GT+A Stochastic 0.444 0.979 0.139 0.218
Deterministic 0.117 0.438 0.137 0.232

size tuned in Appendix D.2, and compare the performance differences when in-
jecting stochastic versus deterministic noise. The results are shown in Tab. 5.
We find that ECM with stochastic noise can generate samples as realistic as
that with deterministic noise, but the guidance is excessively diffused. We use
the deterministic injected noise in this paper.

C Additional Implementation Details and Analysis

In this section, we begin by detailing the network structure and parameters
such as the diffusion schedule parameters. Subsequently, we describe the process
of learning compact trajectory representations through Linear Mapping (LM).
Next, we introduce the sample clustering algorithm utilized in this study. Finally,
we compare the influence of different pre-trained marginal trajectory predictors.

C.1 Network Structure and parameters

We use the fixed scene context encoder of pre-trained QCNet [50] to extract
compact and representative context features from context information c. Then,
we utilize a cross-attention layer to update the intermediate noisy data xt with
multiple contexts, including the history encodings of the target agent, the map
encodings, the neighboring agents’ encodings. Inspired by [7], we also add a
cross-attention layer to update xt with the diverse marginal trajectory samples
rli and its corresponding likelihood (generated by pre-trained QCNet [50]). In
addition, we use self-attention to allow the interaction between xt,i and xt,j .
Then the model predicts the noise ϵθ(xt, t).

For the diffusion parameters, we set β0 = 0.0001 and βT = 0.05 for all the
models we trained. And then we calculate αt = 1− βt, ᾱt =

∏T
t=0 αt. We train

the models for 64 epochs.
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For all experiments, we generate 128 samples by default. To facilitate compar-
ison with other state-of-the-art methods on the Argoverse 2 multi-world leader-
board, we generate 2048 joint trajectory samples.

C.2 Compact Latent Representation

According to [16], compact and expressive latent representation helps the
diffusion model to generate high-quality trajectories efficiently. In this paper, we
learn a low-dimensional latent of the trajectory then apply diffusion model in
the latent space. For clearer presentation, we use the notation x in this section
to represent the trajectory. Denote the latent as z ∈ RZ×1 and the mapping
functions between x and z are x = F(z) and z = G(x).

First, we minimize the reconstruction loss, Lrec:

Lrec = ||F(G(x))− x||22 (27)

Second, we constrain mapping between between x and z should be distance-
preserving transformations. The intuition behind is that the latent diffusion
model aims to minimize expected error in latent space, though the ultimate ob-
jective is reducing error in trajectory space. Consequently, it disproportionately
prioritizes samples with significant latent space errors, which may not corre-
spond to those with substantial errors in trajectory space. Thus, we minimize
this regularization term Lreg:

Lreg = (xTx− G(x)TG(x))2 (28)

In addition, extreme variance in different dimension of the latent will cause
instability of the training. Thus, we minimize the variance term Lvar

Lvar = ||std(G(x))− v||22 (29)

where v ∈ RZ×1 whose elements are all η, a learnable variable.
To further improve the efficiency during the inference, we need to find a

mapping G(·) as simple as possible. [16] shows that PCA can have relatively
low reconstruction error, and it is only a linear mapping which is computational
efficient. Inspired by this, we use two linear mapping U ∈ RX×Z and V ∈ RZ×X

to formulate the mapping function, G(x) = xU and F(z) = zV . Since it is
linear mapping, we call this method as Linear Mapping (LM). We set Z = 10
and it works well both in reconstruction and performance of diffusion model. To
satisfy distance-preserving requirements, columns in V should be orthogonal to
each other so each dimension in z is independent with each other. Thus, if this
mapping is well-trained, variance of z is diagonal matrix. In our implementation,
we assume we can learn such a good linear mapping and marginal variances in
Corollary 1 are all diagonal matrices. We visualize the Top-10 components of
PCA [16] and 10 components in V in Fig. 6. The modes learned from the LM
exhibit greater diversity and expressiveness. In addition, latent variances derived
from the LM across different dimensions are consistent, whereas PCA-derived



OptTrajDiff 25

(a) Modes from LM. (b) Modes from PCA.
(c) Variances of latents from
PCA and LM.

Fig. 6: Analysis on PCA and Linear Mapping (Ours).

Table 6: Quantitative results on the Argoverse 2 validation dataset.

Latent avgMinADE∗
6 avgMinFDE∗

6 avgMinADE128 avgMinFDE128

PCA [16] 0.60 1.33 0.46 0.80
LM (Ours) 0.60 1.32 0.43 0.81

latent variances show extreme variability, with a large variance in the main
component and significantly lower variance in the remaining components. We
also compare the performance of latent diffusion model with PCA and LM in
Tab. 6, using Optimal Gaussian Diffusion. Our linear mapping approach can
improve the performance.

C.3 Sample Clustering Algorithm

We design a sample clustering algorithm to to generate a representative set
from a batch of joint trajectory samples. Specifically, we first designate U as the
central point for the groups. Then for each vehicle i, we map the trajectory sam-
ples x0,i, i = 1, 2, ..., N into closest rli, l = 1, 2, ..., L. Thus, we assign each joint
trajectory into U . Subsequently, we sort the U by the size of its group member-
ships. Third, we prune the group based on the center of the groups represented
by the combination of reference trajectories rli. Specifically, if the centers of two
groups are close to each other, the group with the larger number of members
will absorb the other. We define ’close enough’ as a scenario where the maximum
endpoint deviation between these two joint trajectories is less than 2.5 meters,
aligning with the threshold used in NMS [34]. After pruning, we calculate the
probability of each group by its size. Since our clustering algorithm does not need
to calculate the exact log probability [16], it is less computationally demand-
ing compared to more intensive techniques such as Non-Maximum Suppression
(NMS) [34] or Expectation-Maximization (EM) [42]. However, since we do not
explicitly to calculate the likelihood of a sample, the likelihood estimation is not
very accurate. This has resulted in our outperforming the rank-3rd benchmark
on the Argoverse 2 Multi-world Forecasting leaderboard across all metrics, with
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Table 7: Evaluation on different number of samples on the Argoverse 2 Multi-world
Forecasting leaderboard.

# of Samples avgMinFDE∗
6 avgMinFDE∗

1 actorMR∗
6 avgMinADE∗

6 avgMinADE∗
1 avgBrierMinFDE∗

6 actorCR∗
6

32 1.34 2.78 0.18 0.61 1.11 2.01 0.01
128 1.32 2.74 0.17 0.60 1.09 1.97 0.01
512 1.31 2.72 0.17 0.60 1.08 1.96 0.01
1024 1.31 2.71 0.17 0.60 1.08 1.95 0.01
2048 1.31 2.71 0.17 0.60 1.08 1.95 0.01

the exception of avgBrierMinFDEK , which is calculated based on the likelihood
of the samples. Since we are focusing on optimizing diffusion model, we leave fast
and accurate likelihood estimation for the future research. Table 7 demonstrates
the influence of the number of samples. With more samples, all metrics improve.
The performance saturates when the number of samples exceeds 1024.

C.4 Ablation Study on Marginal Predictors

We froze the trained Optimal Gaussian Diffusion (OGD) model used in
Sec. 5.2 and replaced QCNet [50] with Forecast-MAE [2] as the marginal pre-
dictor. We downloaded their pre-trained weights from their official website 6

and fine-tuned them for multiple epochs. Fine-tuning is necessary because the
pre-trained weights were trained on a subset of target agents for the joint pre-
diction task [44]. We compare the marginal and joint metrics in Tab. 8. The
Forecast-MAE version of our model also yielded good performance, showing the
flexibility of our approach. Note that the joint metrics of OGD are correlated
with the marginal metrics. It indicates that we could improve OGD’s perfor-
mance without re-training if a better marginal predictor is available.

Table 8: Comparison on different marginal predictors.

Predictor Epoch Marginal Metrics Joint Metrics
MinADE6 MinFDE6 avgMinADE128 avgMinFDE128

QCNet - 0.37 0.60 0.43 0.81
Forecast-mae 7 0.37 0.70 0.47 0.85
Forecast-mae 1 0.39 0.74 0.49 0.91

6 https://github.com/jchengai/forecast-mae
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D Guided Sampling Baseline and Step Size Tuning

In this section, we first derive two guided sampling baselines: Next Noisy
Mean (NNM) Guidance and Score Function (SF) Guidance. We also introduce
the comparison settings for controllable generation tasks. Secondly, we present
the step size tuning experiments.

D.1 Guided Sampling Baseline

Previous guided sampling approaches for controllable generation in autonomous
driving are mainly focusing on guide the sample generation with an analytical
guidance cost function J (·) defined on clean data x0, such as goal point guid-
ance and target speed guidance [49]. In this paper, we discuss guided sampling
approach under the human-defined guidance cost function J (·) with no need to
train additional guidance function defined on noisy data xt, t > 0 [15].

The first baseline is to directly calculate ∇xt
J (xt). Specifically, it first cal-

culate the mean of xt−1 conditioned on xt,

mt−1 =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (30)

Then, add the guidance into mt−1

m̃t−1 = mt−1 − clip(ζ∇mt−1
J (mt−1),±βtσp) (31)

where ζ is the step size, clip is elementwise clipping function, σp is the positive
squared root of diag[Σp]. Note that mt−1 is also noisy so J (mt−1) suffers from
numerical instability. Since this method directly inject the guidance into the
mean of next noisy data distribution xt−1, we call it as Next Noisy Mean (NNM)
Guidance.

The second baseline is to first project xt into x̂0 on the clean manifold and
then calculate the guidance ∇xtJ (x̂0) [16,28]. Note that [16,28] directly train a
denoiser to predict x̂0. In our DDPM [12] formulation, x̂0 is estimated through
Tweedie’s formula,

x̂0 =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t)) (32)

Then, add the guidance ∇xt
J (x̂0) to the score function,

s̃θ(xt, t) = sθ(xt, t) + clip(ζ
√
1− ᾱt∇xt

J (x̂0),±σp)/
√
1− ᾱt (33)

where ζ is the step size. Since ϵθ(xt, t) = −
√
1− ᾱtsθ(xt, t), we have

ϵ̃θ(xt, t) = ϵθ(xt, t)− clip(ζ
√
1− ᾱt∇xt

J (x̂0),±σp) (34)

We use DDIM [35] to accelerate the inference for controllable generation.
Note that we replace βt in Eq. (31) with

√
1− ᾱt/ᾱt′ for time index t′, t′ < t.
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(a) GT+Normal Speed (b) GT+Deceleration (c) GT+Acceleration

(d) U+Normal Speed (e) U+Deceleration (f) U+Acceleration

Fig. 7: Evaluation on the impact of step size. In general, small step size causes low
guidance effectiveness. Big step size will cause the optimization process unstable, lead-
ing to low guidance effectiveness.

To fairly compare the performance and efficiency of different guided sampling
approaches, we set one network inference step followed by one gradient guidance
step. For our ECM and ECMR, we set tk to be the same as the DDIM time step
t. Specifically, we set DDIM step stride to 10 and T to 100. Then tk = 10(k+1),
where k = 0, 1, ..., 9.

D.2 Step Size Tuning

We conduct a grid search to identify the optimal gradient step size for
NNM, SF, ECM, and ECMR. For NNM, ECM and ECMR, we use the settings
ζ ∈ {1, 5, 7, 10, 15, 30, 60, 100}. For SF, ζ ∈ {10, 500, 1000, 2000, 3000, 5000}. We
find that both excessively small and large gradient step sizes result in low guid-
ance effectiveness, similar to the inefficiency or instability seen in gradient-based
optimization algorithms with overly small or large step sizes. The optimal step
size lies in between. Based on Fig. 7, we select the optimal step size that yields
the lowest minJFDE. We apply these optimal step sizes across all guided sam-
pling methods and controllable generation tasks, and report the quantitative
results using these sizes throughout the remainder of the paper.

E Evaluation on Controllable Generation Tasks

Figure 8 showcases the performance of various guided sampling methods
across different tasks. ECM and ECMR consistently outperform others in min-
JFDE across all tasks and in minJRDE in nearly all tasks, indicating their
superior guidance effectiveness and realism. Notably, ECMR, in particular, ex-
cels in meanJFDE/meanJRDE, suggesting the generated joint trajectories are
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(a) minJFDE (b) minJRDE

(c) meanJFDE (d) meanJRDE

Fig. 8: Evaluation on different guided sampling methods.

Fig. 9: Visualizations on controllable generation: route set GT and Acceleration.
Magenta diamonds represent goal points. Dodgerblue curves represent the predicted
joint trajectory from 0s to 5s. Blue curves represent the predicted joint trajectory from
5s to 6s.

of higher average quality. This implies our methods’ ability to produce valid and
high-quality joint trajectories with fewer samples. The experiment results are
shown in Tab. 9. Our ECM and ECMR approaches can generate a better joint
trajectory with a small number of samples.

Figure 9 and Fig. 10 demonstrate examples in different controllable genera-
tion tasks. Our guided sampling approach, ECM, can better satisfy the guidance
while simultaneously maintaining realism. With reference joint trajectory, ECM
can further enhance its performance.
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Table 9: Evaluation on different number of samples in the controllable generation
task: route set GT and Normal Speed.

Sampling # of samples minJFDE minJRDE

NNM [49] 128 0.193 0.134
SF [16,28] 128 0.116 0.114

ECM 128 0.056 0.113
ECM 96 0.068 0.113
ECM 64 0.135 0.118
ECM 32 0.351 0.143

ECMR 128 0.046 0.115
ECMR 96 0.046 0.116
ECMR 64 0.088 0.119
ECMR 32 0.368 0.993

Fig. 10: Visualizations on controllable generation: route set U and Acceleration.
Magenta diamonds represent goal points. Dodgerblue curves represent the predicted
joint trajectory from 0s to 5s. Blue curves represent the predicted joint trajectory from
5s to 6s.
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